An evolutionary arms race between KRAB zinc finger genes 91/93 and SVA/L1 retrotransposons
نویسندگان
چکیده
Throughout evolution, primate genomes have been modified by waves of retrotransposon insertions1,2,3. For each wave, the host eventually finds a way to repress retrotransposon transcription and prevent further insertions. In mouse embryonic stem cells (mESCs), transcriptional silencing of retrotransposons requires TRIM28 (KAP1) and it’s repressive complex, which can be recruited to target sites by KRAB zinc finger proteins such as murinespecific ZFP809 which binds to integrated murine leukemia virus DNA elements and recruits KAP1 to repress them4,5. KZNF genes are one of the fastest growing gene families in primates and this expansion is hypothesized to enable primates to respond to newly emerged retrotransposons6,7. However, the identity of KZNF genes battling retrotransposons currently active in the human genome, such as SINE-VNTR-Alu (SVA)8 and Long Interspersed Nuclear
منابع مشابه
Transposable Elements, Polydactyl Proteins, and the Genesis of Human-Specific Transcription Networks.
Transposable elements (TEs) may account for up to two-thirds of the human genome, and as genomic threats they are subjected to epigenetic control mechanisms engaged from the earliest stages of embryonic development. We previously determined that an important component of this process is the sequence-specific recognition of TEs by KRAB (Krüppel-associated box)-containing zinc-finger proteins (KR...
متن کاملDeep Vertebrate Roots for Mammalian Zinc Finger Transcription Factor Subfamilies
While many vertebrate transcription factor (TF) families are conserved, the C2H2 zinc finger (ZNF) family stands out as a notable exception. In particular, novel ZNF gene types have arisen, duplicated, and diverged independently throughout evolution to yield many lineage-specific TF genes. This evolutionary dynamic not only raises many intriguing questions but also severely complicates identifi...
متن کاملThe evolution of gene expression and binding specificity of the largest transcription factor family in primates.
The KRAB-containing zinc finger (KRAB-ZF) proteins represent the largest family of transcription factors (TFs) in humans, yet for the great majority, their function and specific genomic target remain unknown. However, it has been shown that a large fraction of these genes arose from segmental duplications, and that they have expanded in gene and zinc finger number throughout vertebrate evolutio...
متن کاملA common DNA-binding site for SZF1 and the BRCA1-associated zinc finger protein, ZBRK1.
More than 220 Kruppel-associated box-zinc finger protein (KRAB-ZFP) genes are encoded in the human genome. KRAB-ZFPs function as transcriptionalrepressors by binding DNA through their tandem zinc finger motifs.Gene silencing is mediated by the highly conserved KRAB domain, which recruits histone deacetylase complexes, histone methylases, and heterochromatin proteins. However, little is known of...
متن کاملDifferential expansion of zinc-finger transcription factor loci in homologous human and mouse gene clusters.
Mammalian genomes carry hundreds of Krüppel-type zinc finger (ZNF) genes, most of which reside in familial clusters. ZNF genes encoding Krüppel-associated box (KRAB) motifs are especially prone to this type of tandem organization. Despite their prevalence, little is known about the functions or evolutionary histories of these clustered gene families. Here we describe a homologous pair of human ...
متن کامل